Seien \(a \in K, \vec{w}\in W\) mit \(a\neq 0\).
\(\begin{aligned} & & a\cdot \vec{w} & =\vec{0} & & |\,\cdot a^{-1}\\ & \implies & a^{-1}\cdot\left(a\cdot \vec{w}\right) & =a^{-1}\cdot\vec{0}\\ & \implies & \left(a^{-1}\cdot a\right)\cdot \vec{w} & =a^{-1}\cdot\vec{0}\\ & \implies & 1\cdot \vec{w} & =a^{-1}\cdot\vec{0}\\ & \implies & \vec{w} & =a^{-1}\cdot\vec{0}\\ & \implies & \vec{w} & =\vec{0}\\ \end{aligned}\)
Du müsstest noch zeigen: Sind \(a \in K, \vec{w}\in W\) mit \(w\neq \vec{0}\), dann gilt \(a\cdot\vec{w}=\vec{0}\implies a=\vec{0}\).
Im letzten Umformungsschritt wurde verwendet, dass \(a\cdot\vec{0} = \vec{0}\) für jedes \(a\in K\) ist. Beweis dazu:
\(\begin{aligned} & & a\cdot\vec{0} & =a\cdot\vec{0}\\ & \implies & a\cdot(\vec{0}+\vec{0}) & =a\cdot\vec{0}\\ & \implies & \left(a\cdot\vec{0}\right)+\left(a\cdot\vec{0}\right) & =a\cdot\vec{0} & & |\,+\left(-\left(a\cdot\vec{0}\right)\right)\\ & \implies & \left(\left(a\cdot\vec{0}\right)+\left(a\cdot\vec{0}\right)\right)+\left(-\left(a\cdot\vec{0}\right)\right) & =\left(a\cdot\vec{0}\right)+\left(-\left(a\cdot\vec{0}\right)\right)\\ & \implies & \left(a\cdot\vec{0}\right)+\left(\left(a\cdot\vec{0}\right)+\left(-\left(a\cdot\vec{0}\right)\right)\right) & =\left(a\cdot\vec{0}\right)+\left(-\left(a\cdot\vec{0}\right)\right)\\ & \implies & \left(a\cdot\vec{0}\right)+\vec{0} & =\vec{0}\\ & \implies & a\cdot\vec{0} & =\vec{0} & & \end{aligned}\)
Aufgabe. Gib in beiden Beweisen zu jedem Umformungsschritt das Körper- oder Vektorraumaxiom an, das verwendet wurde.