$$ r^2= R^2-\left(\frac{h}{2}\right)^2$$
Zylinder:
$$ V_Z=\pi\cdot r^2h =\pi\cdot \left(R^2-\left(\frac{h}{2}\right)^2\right)\cdot h=\pi\cdot R^2\cdot h-\frac{\pi}{4}\cdot h^3$$
$$ V'_Z(h)=\pi R^2-\frac{3\pi}{4}\cdot h^2 $$
$$ V'_Z(h)=0 \Rightarrow h^2=\frac{4R^2}{3} $$
$$ r^2= R^2-\frac{h^2}{4}= R^2-\frac{R^2}{3}=\frac{2}{3}R^2$$
$$ V_Z=\pi\cdot r^2h =\pi \cdot \frac{2}{3}R^2\cdot\frac{2R}{\sqrt 3}=\frac{1}{\sqrt 3}\cdot\frac{4}{3}\pi R^3=\frac{1}{\sqrt 3}\cdot V_\text{Kugel}$$