Aufgabe:
Die Metalltechnik GmbH fertig die Produkte I und II. Dabei werden die Maschinen A,B und C durchlaufen. Für die Fertigung einer ME des Produkts I werden 5 Stunden auf Maschine A, 4 Stunden auf Maschine B und 1 Stunde auf Maschine C benötigt. Für die Fertigung einer ME des Produktes II wird Maschine A 3 Stunden und Maschine B 5 Stunden eingesetzt. Maschine A kann maximal 195 Stunden, Maschine B maximal 260 Stunde und Maschine C maximal 24 Stunden belegt werden.
Für eine abgesetzte ME von Produkt I erzielt die Metalltechnik GmbH ein Gewinn von a Euro, für eine ME von Produkt II einen Gewinn von b Euro.
- Bestimmen sie die gewinnmaximale Produktionsmenge des Produktes I und des Produktes II, wenn für jede erzeugte und abgesetzte Menge Einheit 1€ Gewinn erzielt wird .
- Wählen sie a und b so, dass bei einer Produktion von 24 ME von Produkt I und 25 ME von Produkt II der Gewinn maximal ist.
- Geben sie eine Beziehung zwischen a und b an, sodass für die Produktionspaare (24|25) und (15|40) der Gewinn maximal ist. Bestimmen sie a und b so, dass der maximale Gewinn 390€ beträgt.
Problem/Ansatz:
Die erste Aufgabe ist kein Problem, die habe ich (graphisch/durch gleichsetzen der Funktionen) gelöst. Der maximale Gewinn wird bei einer Produktion von 24,6 ME von Produkt I und 24 ME von Produkt II erzielt. Der Gewinn beträgt dann 48,6 €.
Bei der zweiten und dritten Aufgabe komme ich jedoch nicht weiter/ habe z,.zt. keine Ansatz. Wäre über eure Hilfe sehr dankbar.
Gruß