Könnt ihr beiden mir auch bitte noch hierbei helfen:
Prüfen Sie, ob es Basen \( \mathcal{C}_{1}, \mathcal{C}_{2} \) von \( V \) und eine Linearform \( \Phi: V \times V \longrightarrow \mathbb Q\) gibt, so dass
\( M\left(C_{1}, \Phi, C_{1}\right)=A \) und \( M\left(\mathcal{C}_{2}, \Phi, \mathcal{C}_{2}\right) \) eine Diagonalmatrix ist.
Kann ich hier vielleicht mit der Transformationsformel argumentieren?