Zu erst die Verteilung (was hast Du gerechnet?)
N=5, n=2, M={3,2}, m={...}
\(\scriptsize \left(\begin{array}{rrrrrr}0& \left\{ 2, 0 \right\} &\frac{3}{10}& \left\{ \left(\begin{array}{r}3\\2\\\end{array}\right), \left(\begin{array}{r}2\\0\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\1& \left\{ 1, 1 \right\} &\frac{3}{5}& \left\{ \left(\begin{array}{r}3\\1\\\end{array}\right), \left(\begin{array}{r}2\\1\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\2& \left\{ 0, 2 \right\} &\frac{1}{10}& \left\{ \left(\begin{array}{r}3\\0\\\end{array}\right), \left(\begin{array}{r}2\\2\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\\end{array}\right)\)
Die Hypergeom V. geht von nicht unterschiedbaren Elementen aus - damit ist keine Reihenfolge ableitbar. Wenn wir die drei schwarzen zu grau,dunkelgrau,schwarzgrau machen dann
N=5, n=2, M={1,1,1,2}, m= {...}
\(\scriptsize \left(\begin{array}{rrrrrr}0& \left\{ 1, 1, 0, 0 \right\} &\frac{1}{10}& \left\{ \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}2\\0\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\1& \left\{ 1, 0, 1, 0 \right\} &\frac{1}{10}& \left\{ \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}2\\0\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\2& \left\{ 0, 1, 1, 0 \right\} &\frac{1}{10}& \left\{ \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}2\\0\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\3& \left\{ 1, 0, 0, 1 \right\} &\frac{1}{5}& \left\{ \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}2\\1\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\4& \left\{ 0, 1, 0, 1 \right\} &\frac{1}{5}& \left\{ \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}2\\1\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\5& \left\{ 0, 0, 1, 1 \right\} &\frac{1}{5}& \left\{ \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\1\\\end{array}\right), \left(\begin{array}{r}2\\1\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\6& \left\{ 0, 0, 0, 2 \right\} &\frac{1}{10}& \left\{ \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}1\\0\\\end{array}\right), \left(\begin{array}{r}2\\2\\\end{array}\right) \right\} &/&\left(\begin{array}{r}5\\2\\\end{array}\right)\\\end{array}\right)\)