Aufgabe:
Die Gaußkurve zu den Parametern μ und δ2 ist gegeben durch
\( f(x)=\dfrac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \)
(Normalverteilungskurve) Erinnern Sie sich an den Punkt der Kurve, an dem die Tangente waagerecht verläuft! Berechnen Sie die beiden Wendepunkte (also beide Koordinaten dieser Punkte); dabei handelt es sich um diejenigen Punkte, an denen die zweite Ableitung ihr Vorzeichen ändert; berechnen Sie also die Nullstellen der zweiten Ableitung.
Bemerkung: Der halbe Abstand zwischen den beiden Wendepunkten ist wie groß? Man bezeichnet ihn als die halbe Breite der Glocke.
Problem/Ansatz:
Die erste Ableitung sieht ja so aus: f'(x) = \( \frac{1}{\sqrt{2μδx^{2}}} \) * \( e^{-\frac{(x-μ)^{2}}{2δ^{2}}} \) * (\({-\frac{(x-μ)^{2}}{2δ^{2}}} \)).
Ist die zweite Ableitung dann f''(x) = \( \frac{1}{\sqrt{2μδx^{2}}} \) * \( e^{-\frac{(x-μ)^{2}}{2δ^{2}}} \) * (\({-\frac{(x-μ)^{2}}{2δ^{2}}} \))\( ^{2} \)?
Und wenn ja, wie berechne ich dann die Nullstellen? Natürlich das Ganze gleich Null setzen, aber ab dann weiß ich nicht weiter, da ich ja keine weiteren Werte mehr habe.