Hallo,
y' = 2 e^(-0.5x) -10e^(-2x)
y'' =20 e^(-2x) -e^(-0.5x)
y''' =0.5 e^(-0.5x) -40e^(-2x)
Extremstellen:
\( y^{\prime}=0=2 e^{-0,5 x}-10 e^{-2 x} |+10 e^{-2 x} \)
\( 10 e^{-2 x}=2 e^{-0,5 x} \quad |: 2 \)
\( 5 e^{-2 x}=e^{-0.5 x} \quad | * e^{0.5 x} \)
\( \frac{5 e^{0,5 x}}{e^{2 x}}=1 \)
\( 5 e^{-1,5 x}=1 \quad |: 5 \)
\( e^{-1,5 x}=\frac{1}{5} \quad | \ln (...) \)
\( -1,5 x=\ln (1)-\ln (5) \)
\( \ln (1)=0 \)
\( -1,5 x=-\ln (5) \)
\( \begin{aligned} x &=\frac{-\ln (5)}{-1,5}=\frac{2}{3} \cdot \ln (5) \\ & x \approx 1,07296 \end{aligned} \)
Extreme Points of \( 4+5 e^{-2 x}-4 e^{-\frac{x}{2}}: \quad \) Minimum \( \left(\frac{2 \ln (5)}{3},-\frac{15}{e^{\frac{4 \ln (5)}{3}}}+4\right) \)
y'' (1.07296) > 0 ->Minimum
Minima/Maxima:
notwendiges Kriterium: \( \quad f^{\prime}\left(x_{E}\right)=0 \)
hinreichendes Kriterium (Minima): \( \quad f^{\prime}\left(x_{E}\right)=0 \wedge f^{\prime \prime}\left(x_{E}\right)>0 \) hinreichendes Kriterium (Maxima): \( f^{\prime}\left(x_{E}\right)=0 \wedge f^{\prime \prime}\left(x_{E}\right)<0 \)
Wendestellen:
notwendiges Kriterium: \( \quad f^{\prime \prime}\left(x_{E}\right)=0 \)
hinreichendes Kriterium: \( \quad f^{\prime \prime}\left(x_{E}\right)=0 \wedge f^{\prime \prime \prime}\left(x_{E}\right) \neq 0 \)