Aloha :)
Ich schlage vor, die Standardbasis \(S\) der 2x2-Matrizen zu verwenden:$$S=\left(\,\left(\begin{array}{c}1 & 0\\0 & 0\end{array}\right)\,,\,\left(\begin{array}{c}0 & 1\\0 & 0\end{array}\right)\,,\,\left(\begin{array}{c}0 & 0\\1 & 0\end{array}\right)\,,\,\left(\begin{array}{c}0 & 0\\0 & 1\end{array}\right)\,\right)$$Dafür ermitteln wir nun die Darstellngsmatrix:
$$\left(\begin{array}{c}1 & 2\\2 & 1\end{array}\right)\left(\begin{array}{c}1 & 0\\0 & 0\end{array}\right)=\left(\begin{array}{c}1 & 0\\2 & 0\end{array}\right)=1\cdot\left(\begin{array}{c}1 & 0\\0 & 0\end{array}\right)+2\cdot\left(\begin{array}{c}0 & 0\\1 & 0\end{array}\right)$$$$\left(\begin{array}{c}1 & 2\\2 & 1\end{array}\right)\left(\begin{array}{c}0 & 1\\0 & 0\end{array}\right)=\left(\begin{array}{c}0 & 1\\0 & 2\end{array}\right)=1\cdot\left(\begin{array}{c}0 & 1\\0 & 0\end{array}\right)+2\cdot\left(\begin{array}{c}0 & 0\\0 & 1\end{array}\right)$$$$\left(\begin{array}{c}1 & 2\\2 & 1\end{array}\right)\left(\begin{array}{c}0 & 0\\1 & 0\end{array}\right)=\left(\begin{array}{c}2 & 0\\1 & 0\end{array}\right)=2\cdot\left(\begin{array}{c}1 & 0\\0 & 0\end{array}\right)+1\cdot\left(\begin{array}{c}0 & 0\\1 & 0\end{array}\right)$$$$\left(\begin{array}{c}1 & 2\\2 & 1\end{array}\right)\left(\begin{array}{c}0 & 0\\0 & 1\end{array}\right)=\left(\begin{array}{c}0 & 2\\0 & 1\end{array}\right)=2\cdot\left(\begin{array}{c}0 & 1\\0 & 0\end{array}\right)+1\cdot\left(\begin{array}{c}0 & 0\\0 & 1\end{array}\right)$$Damit lautet die Abbildungsmatrix bzgl. der Standardbasis \(S\):$$M(f)_S=\left(\begin{array}{c} 1 & 0 & 2 & 0\\ 0 & 1 & 0 & 2\\ 2 & 0 & 1 & 0\\ 0 & 2 & 0 & 1\end{array}\right)$$