Hallo tokio,
Du hättest vielleicht noch schreiben sollen, ob die Parabeln nach oben oder nach unten offen sind.
Beides sind eigentlich Normalparabeln ..
Du meinst wahrscheinlich: nach oben offen.
Wenn man ein achsenparalles Rechteck so in einen Graphen mit Parabel zeichnet, dass ein Ecke des Rechtecks sich im Scheitel befindet und die gegenüberliegende Ecke auf der Parabel, so teilt die Parabel das Rechteck immer im Verhältnis \(1:2\). Dann wäre in Deinem Fall eine mögliche Lösung
~plot~ 4*x^2/3;3*(x>0)*(x<3);4*(x-3)^2/3;[[-2|5|-1|4]] ~plot~
mit $$K: \space f(x) = \frac 43 x^2 \\ G: \space g(x) = \frac 43 (x-3)^2$$Die obere linke Fläche \(A\), die von \(K\) (blau) von dem Quadrat (rot) abgeschnitten wird, ist $$A = \int_0^{3/2} 3 - \frac 43 x^2\, \text d x = \left. 3x - \frac 49 x^3 \right|_0^{3/2} = 3$$und damit ein Drittel der Gesamtfläche des Quadrats von 9. Und bei der rechten Parabel \(G\) ist es genauso.