Aufgabe:
Von einem quaderförmigen Schwimmbecken mit 12 m Länge, 8 m Breite und 3 m Höhe wird über 9 Stunden Wasser abgepumpt.
Zu Beginn beträgt der Wasserstand 2.9 m.
Die Änderungsrate der Wassermenge (in m3 pro Stunde) ist durch folgende Funktion gegeben:
a(t)=−0.05⋅t3−0.2⋅t2−2⋅t
Wie hoch ist der Wasserstand (in m) nach 3 Stunden im Becken?
Problem/Ansatz:
habe die Stammfunktion erstellt: -0,0125*t^4-0,0666666667*t^3-t^2
dann habe ich die Änderungsrate von 0-3 integriert und bekam -11,8125 heraus, nächster Schritt 278,40-11,8125=262,5875. Den Wasserstand berechnete ich 262,5875/12/8= 2,74m. Dieser Wert ist leider falsch, kann mir jemand bitte meinen Fehler zeigen.