Stelle die nötige Gleichung auf und Löse sie zur Unbekannten auf:
[4, 4, 2]·[6, 0, z] / (ABS([4, 4, 2])·ABS([6, 0, z])) = COS(45°) --> z = 6/7 ∨ z = 6
[spoiler]
(2·z + 24) / (6·√(z^2 + 36)) = √2/2
2·z + 24 = √2/2·6·√(z^2 + 36)
2·z + 24 = √2/2·6·√(z^2 + 36)
2·z + 24 = 3·√2·√(z^2 + 36)
4·z^2 + 96·z + 576 = 9·2·(z^2 + 36)
4·z^2 + 96·z + 576 = 18·z^2 + 648
18·z^2 + 648 - (4·z^2 + 96·z + 576) = 0
14·z^2 - 96·z + 72 = 0 --> z = 6/7 ∨ z = 6
[/spoiler]