Hallo Sven,
Du hast da ein echtes Problem ...
Mathematik lebt von logischen Schlußfolgerungen. Man hat gewisse Voraussetzungen oder Annahmen und kommt dann durch logische Schlußfolgerungen zu einer Erkenntnis. Das ganze kann man dann als Beweis bezeichnen, wenn alles schlüssig ist.
Bleiben wir mal bei
Die ganzrationale Funktion Tn mit n∈N hat den Koeffizienten mit der höchsten Potenz von x: an=2n-1
und ich hatte Dir empfohlen, eine Funktion \(k_n(T)\) zu definieren, die Dir den Koeffizienten vor \(x^n\) liefert. Mit Hilfe der Funktion \(k_n\) kann ich nun die Annahme formal hinschreiben. Es soll bewiesen werden, dass$$k_n(T_n) = 2^{n-1}$$ist. Das setzt bereits voraus, dass \(x^n\) auch der höchste Exponent von \(T_n\) ist. Damit liefert \(k_n(T_n)\) den Koeffizienten vor \(x^n\) und damit auch den Koeffizienten vor dem \(x\) mit dem höchsten Koeffizienten. Diese Voraussetzung ist erfüllt, da sie bereits unter a) bewiesen wurde (s.o.)
Der Induktionsanfang sieht nun so aus: $$k_1(T_1) = k_1(1 \cdot x^1) = 1 = 2^{1-1}$$Das folgt logisch aus den Termen \(T_1 = x\) (das ist gegeben) und \(x = {\colorbox{#ffaaff}{1}} \cdot x^1\) (allg. Rechenregeln). Und lt. der Definition soll \(k_{\colorbox{#ffff00}{1}}\) den Koeffizienten vor \(x^{\colorbox{#ffff00}{1}}\) liefern, und das ist hier die \({\colorbox{#ffaaff} 1}\). und genauso$$k_2(T_2) = k_2(2x-1) = 2 = 2^{2-1}$$
Der Induktionsanfang besagt, dass für ein oder mehrere konkrete (kleine) \(n\) hier \(n=1\) und \(n=2\) die zu beweisende Aussage - hier \(k_n(T_n) = 2^{n-1}\) richtig ist. Ich setzte hier \(n=1\) bzw. \(n=2\) ein und sehe (s.o.) auf Grund der Definitionen und Rechenregeln dass es passt.
Der Induktionsschritt soll nun auf der Grundlage, dass die Regel für zwei auf einander folgende \(n\) richtig ist, zeigen, dass es dann auch für \(n+1\) richtig ist. Und dazu wird bei Rekursionen auch immer(!) die Rekursionsformel benötigt - hier \(T_{n+1} = 2T_n - T_{n-1}\). D.h. die Annahme ist$$k_{n+1}(T_{n+1}) = 2^{(n+1)-1} = 2 ^n $$und genau das gilt es nun zu zeigen, Und zwar mit Hilfe aller Erkenntnisse und Definitionen, die oben schon gemacht worden. Insbesonders ist mit dem Induktionsanfang bereits gezeigt, dass $$k_n(T_n) = 2^{n-1} \space \text{und} \space k_{n-1}(T_{n-1}) = 2^{n-2} \quad \text{für} \space n=2 $$das dürfen wir im Folgenden benutzen.
Vorher benötigen wir noch ein paar Regeln für das Verhalten von \(k_n\) $$\begin{aligned} k_n(T_i \pm T_j) &= k_n(T_i) \pm k_n(T_j) && A\\ k_m(T_n) &= 0 \quad \text{wenn} \space m \gt n &&B\\ k_n(b \cdot T_n) &= b \cdot k_n(T_n) ,\space b \in \mathbb R &&C \\ k_{n+1}(x \cdot T_n)&= k_n(T_n) && D \end{aligned}$$Wenn Dir davon irgendwas nicht klar sein sollte, so frage unbedingt nach.
Nun zum eigentlichen Induktionsschritt: $$\begin{aligned} k_{n+1}(T_{n+1}) &= k_{n+1}(2xT_n - T_{n-1}) &&(1) \\ &= k_{n+1}(2xT_n) - k_{n+1}(T_{n-1}) &&(2)\\ &= k_{n+1}(2xT_n) - 0 &&(3) \\ &= 2 \cdot k_{n+1}(xT_n) &&(4) \\ &= 2 \cdot k_{n}(T_n) && (5)\\ &= 2 \cdot 2^{n-1} && (6) \\ &= 2^n \end{aligned}$$
1.) Ich habe hier nur die Rekursionsformel eingesetzt. Da diese vorgegeben, folglich steht auf beiden Seiten immer noch das gleiche.
2.) Rechenregel \(A\) angewendet
3.) Regel \(B\) angewendet
4.) Rechenregel \(C\) angewendet
5.) Rechenregel \(D\) angewendet
6.) Induktionsvoraussetzung angewendet
und am Ende steht genau das da, was in der Annahme vermutet wurde. Auf dem Weg dorthin habe ich nur Dinge gemacht, bzw. Terme durch andere ersetzt, die vorher als richtig bzw, wahr bekannt waren. D.h. nur logisch von einem auf das anderen geschlossen. Womit diese Annahme bewiesen ist.
Diese ganzen Aufgaben dienen doch nicht zu, dass Du am Ende Deiner Ausbildung Induktionsbeweise kannst, sondern dass Du in der Lage bist, von bekannten und richtigen Dingen auf neues zu schließen und das auch formal aufzubereiten. Zugegeben habe ich hier mit der Formalkanone auf den Spatzenbeweis geschossen. Ich wollte Dir aber damit zeigen, dass man so was streng logisch aufschreiben kann.