Die Aussage ist richtig. Sei \( (f_n) \) eine Folge gleichmäßig stetiger Funktionen die gleichmäßig gegen eine Funktion f konvergiere.
Beh. f ist gleichmäßig stetig, d.h.
$$\forall\varepsilon>0~\exists\delta>0~\forall x,y\in \mathbb{R} \colon|x-y|<\delta\implies |f(x)-f(y)| < \varepsilon $$
Sei \( \varepsilon > 0 \) beliebig, da \( f_n \to f \) gleichmäßig, existiert ein \( k \in \mathbb{N} \) mit
$$ \forall x \in\mathbb{R}: |f_k(x) - f(x)| < \frac{\varepsilon}{3} $$
(man kann \(k\) sogar so wählen, dass es für alle \( k' \ge k \) gilt). Dieses \( f_k \) ist ja aber auch gleichmäßig stetig, also finden wir ein \( \delta > 0 \) s.d.
$$ \forall x,y \in \mathbb{R}: |x-y| < \delta \implies |f_k(x) - f_k(y)| < \frac{\varepsilon}{3} $$
Seien jetzt \( x,y \in \mathbb{R} \) mit \( |x-y| < \delta \), dann gilt:
$$ \begin{aligned} |f(x) - f(y)| &= |f(x) - f_k(x) + f_k(x) - f_k(y) + f_k(y) - f(y)| \\ &\le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)| \\ &= |f_k(x) - f(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3}+ \frac{\varepsilon}{3}\\&=\varepsilon \end{aligned} $$