Hi, ich habe gerade diese Aufgabe (falsch) gelöst, weiß aber nicht so recht, was ich falsch gemacht habe. Ich soll überprüfen, ob es hermitesche Skalarprodukte auf ℂ2 mit
〈(10),(10)〉= 1,〈(01),(01)〉= 1 gibt.
Hermitesche Skalarprodukte haben wir folgendermaßen definiert:
$$<\begin{pmatrix} x\\y \end{pmatrix},\begin{pmatrix} u\\v \end{pmatrix}>=\begin{pmatrix} x & y \\\end{pmatrix}A\begin{pmatrix} u\\v \end{pmatrix} =\begin{pmatrix} x & y \\\end{pmatrix}\begin{pmatrix} 1 & z \\ \overline{z} & 1\end{pmatrix}\begin{pmatrix} u\\v \end{pmatrix}$$
mit $$A=\begin{pmatrix} 1 & z \\ \overline{z} & 1 \end{pmatrix}$$
Jetzt habe ich einfach die Vektoren eingesetzt und immer ein von z unabhängiges Ergebnis herausbekommen:
$$<\begin{pmatrix} 1\\0 \end{pmatrix},\begin{pmatrix} 1\\0 \end{pmatrix}>=\begin{pmatrix} 1 & 0\\\end{pmatrix}\begin{pmatrix} 1 & z \\ \overline{z} & 1\end{pmatrix}\begin{pmatrix} 1\\0 \end{pmatrix}=\begin{pmatrix} 1 & z \\\end{pmatrix}\begin{pmatrix} 1\\0 \end{pmatrix}=1$$
Analog war es auch bei dem zweiten Vektor.
Aber nun ist mein Problem, dass in den Lösungen steht, dass ein hermitesches Skalarprodukt nur gegeben ist, wenn IzI<1 und ich verstehe nicht so ganz warum, weil mein Ergebnis ja von z unabhängig ist. Das wurde dann des Weiteren mit den Eigenwerten von A begründet, was mir allerdings nicht so einleuchtet, da ich nicht weiß, was diese in diesem Zusammenhang mit der Aufgabenstellung zu tun haben.
Könnte mir vielleicht jemand helfen?