0 Daumen
3k Aufrufe

leider bin ich bei der unten gezeigten Aufgabe etwas überfragt, was gemacht werden muss. Laut Musterlösung ist die Lösung Wurzel 10.

Bildschirmfoto 2018-09-19 um 09.55.45.png

Skalarprodukt auf R3 mit Matrix gegeben. Induzierte Norm von (2,-1,0)^{T} bestimmen?

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

wahrscheinlich ist mit der Matrix, die sogannte Gramsche Matrix gemeint. Ist diese Matrix \(M\), dann ist das Skalarprodukt zweier Vektoren \(x\) und \(y\) definiert als $$<x,y> = x^T \cdot M \cdot y$$ Somit ist die Norm von \(x= \begin{pmatrix} 2 & -1 & 0\end{pmatrix}^T\) $$\left\lVert x\right\rVert = \sqrt{<x,x>} = \sqrt{x^T \cdot M \cdot x} = \sqrt{10}$$

Avatar von 49 k

Habe es jetzt auch nach langem suchen im Skript wieder gefunden.

noch eine kurze Frage, wie berechne ich denn da das Produkt, weil wenn ich ganz normal von links nach rechts erst xT * M rechne komme ich auf (3 0 -1), dass dann nochmal mal x, dann komme ich auf Wurzel 6?

$$x^T \cdot M = \begin{pmatrix}2& -1& 0\end{pmatrix} \cdot \begin{pmatrix}1& -1& 0\\ -1& 2& 1\\ 0& 1& 3\end{pmatrix} = \begin{pmatrix}3& \colorbox{#ffff00}{-4}& -1\end{pmatrix}$$ Ich vermute, Du hast bei der Berechnung des mittleren Elements ein Vorzeichen unterschlagen: $$2\cdot(-1) + (-1)\cdot 2 + 0\cdot 1 = -4$$ und $$\left( x^T \cdot M \right) \cdot x = \begin{pmatrix}3& -4& -1\end{pmatrix} \cdot \begin{pmatrix}2\\ -1\\ 0\end{pmatrix} = 10$$

vollkommen richtig. Danke dir! :)

0 Daumen

das Skalarprodukt kannst du mithilfe einer symmetrischen, positiv definiten Matrix A wie folgt definieren:

<x,y>= x^T A y , denn es sind dann alle Axiome eines Skalarprodukt erfüllt.

Die daraus induzierte Norm eines Vektors ist einfach √(<x,x>)

Avatar von 37 k

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

1 Antwort
1 Antwort
1 Antwort
Gefragt 5 Jan 2013 von Gast
1 Antwort
Gefragt 24 Okt 2013 von Gast

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community