Weil $$ \frac{1}{1-z} = \sum_{n=0}^\infty z^n $$ gilt für \( |z| < 1 \) folgt
$$ \left( \frac{1}{1-z} \right)^2 = \left( \sum_{n=0}^\infty z^n \right) \left( \sum_{n=0}^\infty z^n \right) = \sum_{n=0}^\infty \sum_{k=0}^n z^k z^{n-k} = \sum_{n=0}^\infty (n+1) z^n $$
Genauso folgt $$ \left( \frac{1}{1-z} \right)^3 = \sum_{n=0}^\infty \sum_{k=0}^n (k+1)z^k z^{n-k} = \frac{1}{2} \sum_{n=0}^\infty (n+1) (n+2) z^n $$
Also gilt $$ \sum_{n=0}^\infty (n+1) (n+2) z^n = 2 \cdot \left( \frac{1}{1-z} \right)^3 $$