g: X = [1, 2, 0] + r·[0, -1, 1]
h: X = [1, 2, -2] + r·[1, -2, 6]
1) Bestimme den Abstand von p zu g
d = ABS(([3, 2, 1] - [1, 2, 0]) ⨯ [0, -1, 1])/ABS([0, -1, 1]) = 3/2·√2 = 2.121
2) Bestimme den Abstand der beiden Geraden g und h
E: X = [1, 2, 0] + r·[0, -1, 1] + s·[1, -2, 6]
N = [0, -1, 1] ⨯ [1, -2, 6] = [-4, 1, 1] = -[4, -1, -1]
E: 4·x - y - z = 2
d = ABS(4·(1) - (2) - (-2) - 2)/ABS([4, -1, -1]) = 1/3·√2 = 0.4714