Aloha :)
Deine Überlegung zum Winkel \(a=\frac{360^\circ}{5}=72^\circ\) ist korrekt. Die Höhe \(h\) des eingezeichneten Dreiecks erhältst du aus der Definition des Tangens:$$\tan\frac{\alpha}{2}=\frac{\text{Gegenkathete}}{\text{Ankathete}}=\frac{a/2}{h}\quad\Rightarrow\quad h=\frac{a/2}{\tan\frac{\alpha}{2}}=\frac{1,5}{\tan36^\circ}\approx2,064573$$Die Fläche des eingezeichneten Dreiecks ist also:$$F_\Delta=\frac{1}{2}\text{Grundseite}\cdot\text{Höhe}=\frac{1}{2}a\cdot h=\frac{1}{2}\cdot3\cdot2,064573\approx3,096859$$Die Gesamtfläche des Fünfecks ist also:$$F_{\text{5-Eck}}=5F_\Delta\approx15,484297$$Den Radius \(r\) des Kreises gewinnen wir aus der Definition des Sinus:$$\sin\frac{\alpha}{2}=\frac{\text{Gegenkathete}}{\text{Hypotenuse}}=\frac{s/2}{r}\quad\Rightarrow\quad r=\frac{s/2}{\sin\frac{\alpha}{2}}=\frac{1}{\sin36^\circ}\approx1,701302$$Damit sind wir fertig:$$F_{\text{graue Fläche}}=F_{5-Eck}-\pi\,r^2=15,484297-\pi\cdot1,701302^2\approx6,391185$$Die graue Fläche beträgt etwa \(6,39\,\mathrm m^2\).