Um die Frage abzuschließen - zusammengefasst
\(\small A:=L_{1} \cdot P_{1} \cdot A=\\ \small \left[\begin{array}{ccc}1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.33333 & 0 & 1\end{array}\right] \quad\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \quad\left[\begin{array}{ccc}-4.0000 & -10.000 & -2.0000 \\ -6.0000 & -60.000 & -27.000 \\ 12.000 & -24.000 & 6.0000\end{array}\right]=\\ \small \left[\begin{array}{ccc}12.000 & -24.000 & 6.0000 \\ 0.0000 & -72.000 & -24.000 \\ 0.0000 & -18.000 & 0.0000\end{array}\right]\)
\(\small R:= L_{2} \cdot P_{2} \cdot A=\\ \small \left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.25 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{ccc}12.000 & -24.000 & 6.0000 \\ 0.0000 & -72.000 & -24.000 \\ 0.0000&-18.000 & 0.0000\end{array}\right] \quad=\\ \small \left[\begin{array}{cccc}12.000 & -24.000 & 6.0000 \\ 0.0000 & -72.000 & -24.000 \\ 0.0000 & 0.0000 & 6.0000\end{array}\right]\)
\(R = L_2 \cdot P_2 \cdot L_1 \cdot 1 \cdot P_1 \cdot A \)
\( L:=\left( L_{2} \cdot P_{2} \cdot L_{1} \cdot 1 \cdot P_{2}\right)^{-1} \quad P A=P_{2} \cdot 1 \cdot P_{1} \cdot A \)
\(\small L:=\left[\begin{array}{ccc}1.0000 & 0.0000 & 0.0000 \\ -0.50000 & 1.0000 & 0.0000 \\ -0.33333 & 0.25000 & 1.0000\end{array}\right]\)