Aloha :)
$$\int\limits_{-2}^2\varphi(x)\,dx=\int\limits_{-2}^1\varphi(x)\,dx+\int\limits_1^2\varphi(x)\,dx=\int\limits_{-2}^11\,dx+\int\limits_1^2(-2)\,dx=\left[x\right]_{-2}^1+[-2x]_1^2$$$$\qquad=1-(-2)+(-4)-(-2)=1+2-4+2=1$$
$$\int\limits_{0}^5\varphi(x)\,dx=\int\limits_0^1\varphi(x)\,dx+\int\limits_1^3\varphi(x)\,dx+\int\limits_3^5\varphi(x)\,dx$$$$\qquad=\int\limits_0^11\,dx+\int\limits_1^3(-2)\,dx+\int\limits_3^53\,dx=\left[x\right]_0^1+\left[-2x\right]_1^3+[3x]_3^5$$$$\qquad=1-0-6-(-2)+15-9=3$$