Also die eigentliche Frage war: berechnen Sie den ggt(f(x),g(x)) und finden sie Polynome a(x),b(x), sodass a(x)f(x)+b(x)g(x)=ggt(f(x),g(x)) ist.
f(x)= x^5-2x^4-x^3+x^2+x+2
G(x)= x^3-x^2-x-2
Der ggt = x-2. Das war einfach. Jetzt aber zu diesem doofen Lemma von Bezout.
Ich muss ja mein ggt dann darstellen aus Polynom(x^5-2x^4-x^3+x^2+x+2) + Polynom (x^3-x^2-x-2)
Mein Problem ist, dass bei meiner Rechnung nie der Rest x-2 stehen bleibt. Nur ganz am Anfang, wenn ich f(x)÷g(x) gerechnet habe bleibt der Rest x^2-2x stehen. Und da hab ich mir dann halt mein ggt zu x(x-2) gemacht und die andere Seite durch x gekürzt. Aber dann erhalte ich den ggt nur für die oben genannten "Brüche". Weis echt nicht mehr weiter