$$1) \sum \limits_{n=0}^{5}(-1)^{n+1}\frac{n}{n+1} = (-1)^{0+1}\frac{0}{0+1}+(-1)^{1+1}\frac{1}{1+1}+(-1)^{2+1}+(-1)^{3+1}\frac{3}{3+1}+(-1)^{4+1}\frac{4}{4+1}+(-1)^{5+1}\frac{5}{5+1}$$
$$\sum \limits_{n=0}^{5}(-1)^{n+1}\frac{n}{n+1} = (-1)^{0+1}\frac{0}{0+1}+(-1)^{1+1}\frac{1}{1+1}+(-1)^{2+1}\frac{2}{2+1}+(-1)^{3+1}\frac{3}{3+1}+(-1)^{4+1}\frac{4}{4+1}+(-1)^{5+1}\frac{5}{5+1} \sum \limits_{n=0}^{5}(-1)^{n+1}\frac{n}{n+1} = 0+\frac{1}{2}+-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6} =\frac{37}{60}$$
$$2) \sum \limits_{n=0}^{5}i=0+1+2+3+4+5= 15$$
$$3)\sum \limits_{k=1}^{20}2=2+2+2+.... = 40$$
$$4)\sum \limits_{k=1}^{4}\frac{i}{i+1}=\frac{1}{1+1}+\frac{2}{2+1}+\frac{3}{3+1}+\frac{4}{4+1}$$
$$=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}= \frac{163}{60}$$
$$5)\sum \limits_{i=1}^{100}i = \frac{100(100+1)}{2}=\frac{10100}{2}= 5050$$
$$6)\sum \limits_{i=0}^{100}2^{i} = \frac{2^{100+1}}{100+1} = wie weiter????$$
$$7) 1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+/- ... =\frac{1}{3^{1000}}$$
$$= (Summenformel vereinfacht) \sum \limits_{n=0}^{1000}\frac{1}{3^{n}}(Ist das richtig???)$$
$$8)\sum \limits_{i=0}^{4}\frac{1}{i!} =\frac{1}{1}+\frac{1}{1*2}+\frac{1}{1*2*3}+\frac{1}{1*2*3*4}$$
$$1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}= \frac{41}{24}$$