Nun, wegen
i 2 = - 1
ist
b 2 * i 2 = - b 2
also:
a 2 + 2 a b i + b 2 * i 2 = i
<=> a 2 + 2 a b i - b 2 = i
<=> a 2 - b 2 + 2 a b i = 0 + 1 i
Koeffizientenvergleich:
a 2 - b 2 = 0 und 2 a b = 1
<=> a 2 = b 2 und a b = 1 / 2
<=> a 2 = b 2 und a = 1 / ( 2 b )
<=> ( 1 / ( 2 b ) ) 2 = b 2
<=> 1 / 4 b 2 = b 2
<=> 1 / 4 = b 4
<=> b 2 = +/- ( 1 / 2 )
<=> b = +/- √ ( 1 / 2 )
Einsetzen in a = 1 / ( 2 b ) :
b = - √ ( 1 / 2 ) => a = 1 / ( 2 * ( - √ ( 1 / 2 ) ) )
b = √ ( 1 / 2 ) => a = 1 / ( 2 * √ ( 1 / 2 ) )
Also:
x ² = i
<=> x = - 1 / ( 2 * ( √ ( 1 / 2 ) ) ) - i √ ( 1 / 2 ) oder x = 1 / ( 2 * √ ( 1 / 2 ) ) + i √ ( 1 / 2 )