Aufgabe:
Wir definieren Folgendes: $$<. , .>: \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} → \mathbb{C} mit <A,B> := Trace(AB^{*}) $$.
Zeige, dass diese Funktion ein Skalarprodukt darstellt.
Problem/Ansatz:
Ich komme schon nicht mal damit zurecht zu zeigen, dass <A,A> > 0 ist.
Denn \(<A,A>= \sum_{i=1}^n a_{ii}*a_{ii}^*\). Also muss ich zeigen, dass jeder Diagonaleintrag \( a_{ii} \) multipliziert mit ihrer komplex konjuzgierten Zahl \( a_{ii}^* \) stehts größer als Null ist, aber das ist doch nicht für jede komplexe Zahl so, oder?