Aloha :)
$$\left(\,-5\cdot\cos(1-x)\,\right)'=-5\cdot\underbrace{(-\sin(1-x))}_{=\text{äußere}}\cdot\underbrace{(1-x)'}_{=\text{innere}}$$Rechnen wir die innere Ableitung \((1-x)'=-1\) aus, erhalten wir als Ergebnis:$$\left(\,-5\cdot\cos(1-x)\,\right)'=-5\cdot(-\sin(1-x))\cdot(-1)=-5\sin(1-x)$$
$$\left(\,\frac{5x^2-4}{2x^2}\,\right)'=\left(\,\frac{5x^2}{2x^2}-\frac{4}{2x^2}\,\right)'=\left(\,\frac{5}{2}-\frac{2}{x^2}\,\right)'=\left(\,-\frac{2}{x^2}\,\right)'=\left(\,-2x^{-2}\,\right)'$$$$=-2\cdot(-2)x^{-3}=4\cdot x^{-3}=\frac{4}{x^3}$$