Leo und Smilla finden 2020 Goldnuggets mit den Massen 1, 2, ... , 2020 Gramm, die sie nach folgender Regel auf eine rote und eine blaue Schatztruhe verteilen:
Zuerst wählt Leo eine der Schatztruhen und nennt Smilla die Farbe der Truhe. Anschließend wählt Smilla eines der noch nicht verteilten Nuggets und legt es in diese Truhe. Dies wiederholen sie, bis alle Nuggets verteilt sind. Danach wählt Smilla eine der beiden Schatztruhen und bekommt alle Nuggets in dieser Truhe.
Wie viel Gramm Gold kann Smilla auf diese Weise mindestens für sich garantieren?
Quelle: https://www.mathe-wettbewerbe.de/bwm/bwm-wettbewerb-1 (Zweite Runde, 2020)
Meine Anmerkung zu dieser Aufgabe:
Da die Aufgabe keinerlei Rahmenbedingungen für das Handeln der Akteure Smilla und Leo bietet (abgesehen von der Verteilweise), muss nicht zwingend davon ausgegangen werden, dass beide Parteien gewinnmaximierende Kapitalisten sind, die sich überdies der besten Vorgehenweise bei Beginn des Spiels bewusst sind. Es ist also durchaus möglich, da dieser Fall nicht durch die Aufgabenstellung ausgeschlossen ist, dass Leo jedes Mal die blaue Truhe wählt; Smilla alle Goldnuggets in diese legt und sich anschließend für die rote Truhe entscheidet. Dieser Fall ist zwar nicht realistisch, allerdings im Rahmen des Möglichen.
Mögliches Gegenargument: Das Verb "garantieren", was stillschweigend annehmen lässt, dass es sich wohl um gewinnmaximierende Bestreben handelt, soll darauf hindeuten, dass man davon ausgehen soll, dass beide die bestmögliche Strategie wählen.
Weiter bereitet mir das Wort "mindestens" Kopfschmerzen: Hiermit sollte, meines Erachtens, eine untere Schranke für den Gewinn von Smilla charakterisiert werden. Die Formulierung schließt für mich nicht aus, die Fragestellung dreist mit "Null" zu beantworten. Dies ist in jedem Fall eine untere Schranke (wobei vermutlich nach der größten unteren Schranke, also dem Imfimum gefragt ist): Smilla kann mindestens Null Gramm für sich sichern. Man könnte aber auch sagen, dass sie mindestens -100 Gramm Nuggets haben kann. "Mindestens" bedeutet für mich größer oder gleich x. Beim logischen Oder genügt es, wenn entweder größer oder gleich wahr ist. Der Fall größer ist abgedeckt.
Was haltet ihr von der Aufgabe, insbesondere unter dem Gesichtspunkt der vielen impliziten Annahmen, die man treffen muss, um die Frage im Sinne der veröffentlichten Lösung zu beantworten?