um zu zeigen, dass $$\lim_{n \rightarrow \infty} \frac{ln(n)}{n} = 0, ~n \in \mathbb{N}$$, reicht es da zu zeigen, dass der ln(n) immer langsamer wächst als n?
Das kann man zeigen mit
$$ln(n+1)-ln(n) < 1 \Leftrightarrow e^{ln(n+1) - ln(n)} < e \Leftrightarrow e^{ln(n+1)} \cdot e^{-ln(n)} < e \Leftrightarrow \frac{n+1}{n} < e \Leftrightarrow n+1 < e \cdot n \Leftrightarrow n > \frac{1}{e-1} \approx 0,6$$
Danke,
Thilo