Aloha :)
$$\int\sin^2(6x)\,dx=\int\underbrace{\sin(6x)}_{=u'}\cdot\underbrace{\sin(6x)}_{=v}\,dx$$$$\phantom{\int\sin^2(6x)\,dx}=\underbrace{-\frac{1}{6}\cos(6x)}_{=u}\cdot\underbrace{\sin(6x)}_{=v}-\int\underbrace{\left(-\frac{1}{6}\cos(6x)\right)}_{=u}\cdot\underbrace{6\cos(6x)}_{=v'}\,dx$$$$\phantom{\int\sin^2(6x)\,dx}=-\frac{1}{6}\underbrace{\cos(6x)\cdot\sin(6x)}_{=\frac{1}{2}\sin(12x)}+\int\underbrace{\cos(6x)\cdot\cos(6x)}_{=\cos^2(6x)=1-\sin^2(6x)}\,dx$$$$\phantom{\int\sin^2(6x)\,dx}=-\frac{1}{6}\cdot\frac{1}{2}\sin(12x)+\int\left(1-\sin^2(6x)\right)\,dx$$$$\phantom{\int\sin^2(6x)\,dx}=-\frac{1}{12}\sin(12x)+\int 1\,dx-\int\sin^2(6x)\,dx$$$$\phantom{\int\sin^2(6x)\,dx}=-\frac{1}{12}\sin(12x)+x+\text{const}-\int\sin^2(6x)\,dx$$Wir addieren auf beiden Seiten der Gleichung das Integral und finden:$$2\int\sin^2(6x)\,dx=-\frac{1}{12}\sin(12x)+x+\text{const}$$$$\int\sin^2(6x)\,dx=-\frac{1}{24}\sin(12x)+\frac{x}{2}+\text{const}$$