Aufgabe:
Gegeben ist die funktion f(t)= (t-3)^2+2.
Bestimme ohne Verwendung des 1. Hauptsatzes der integralrechnung eine integralfunktion der funktion f(t) zur unteren grenze 0 in abhängigkeit von der oberen grenze x . Zugelassen ist die nutzung der integralfunktion obersumme ist b und die untersumme also die zahl unter dem integralzeichen ist t^2dt = b^3÷ 3 und verwendung von flächenformeln .