0 Daumen
907 Aufrufe

Aufgabe:


Eine Studentin darf bei einer mündlichen Statistik-Prüfung 2 von 50 Prüfungsfragen (verdeckt) ziehen. Angenommen, die Studentin hat 45 der 50 Fragen gelernt. Wie groß ist die Wahrscheinlichkeit dafür, dass sie

i) beide Fragen

ii) die zweite, aber nicht die erste

iii) mindestens eine Frage beantworten kann?


Problem/Ansatz:

ich finde einfach keinen guten Ansatz, geht es um die 2 Fragen oder 45 gelernte?

Avatar von

3 Antworten

0 Daumen
 
Beste Antwort

Dein Baumdiagramm ist doch prima.

blob.png

Wie groß ist die Wahrscheinlichkeit dafür, dass sie

i) beide Fragen [1980/2450 = 198/245 = 0,8082]

ii) die zweite, aber nicht die erste [225/2450 = 9/98 = 0,0918]

iii) mindestens eine Frage beantworten kann? [1 - 20/2450 = 243/245 = 0,9918]

Avatar von 487 k 🚀

Wahnsinn, geil aufgelöst!!!

0 Daumen

P(gelernte Frage)=45/50=9/10=0,9.

blob.png

Jetzt die Pfadregeln anwenden.

Avatar von 123 k 🚀

blob.png

Text erkannt:

Sotrogen

Danke, wäre dies auch korrekt?

Ja, natürlich. Ich habe lediglich die Brüche gekürzt.

ja aber dann ist der wert beim 2. Ziehen nicht mehr 0,9 bzw. 0,1

Deins ist richtig - meins ist falsch.

Danke für deine Bemühungen!!

Deine Lösung  ist richtig, da bei der zweiten Ziehung ja eine Frage weniger im Topf ist. So ist die Realität. Roland und ich sind irrtümlich davon ausgegangen, dass es auch möglich ist, zweimal sie gleiche Frage zu bekommen. Die erste Frage also wieder zurück gelegt wird. Was natürlich totaler Quatsch ist.

0 Daumen

45/50=0,9


P(i)= 0,9*0,9=0,81

P(ii)=0,1*0,9= 0,09

P(iii)= 1- P(0)= 1-0,1*0,1=0,99

Das ist alles Quatsch, denn die Fragen werden ja nicht zurück gelegt.

Avatar von 11 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community