Aloha :)
Aufgabe 1:$$z^4=[2\cdot(\cos125^\circ+i\,\sin125^\circ)]^4=[2\cdot \mathrm e^{i\,125^\circ}]^4=2^4\cdot \mathrm e^{(i\,125^\circ)\cdot4}=16\mathrm e^{i\,500^\circ}$$$$\phantom{z^4}=16\mathrm e^{i\,140^\circ}=16(\cos140^\circ+i\sin140^\circ)$$
Aufgabe 2:$$\sqrt[3]{z}=\sqrt[3]{3\mathrm e^{3i}}=\sqrt[3]{3\mathrm e^{i(3+2\pi\cdot n)}}=\sqrt[3]{3}\cdot\sqrt[3]{\mathrm e^{i(3+2\pi\cdot n)}}=\sqrt[3]{3}\cdot\mathrm e^{i\frac{3+2\pi\cdot n}{3}}=\sqrt[3]{3}\mathrm e^{i\frac{2\pi\cdot n}{3}}\cdot\mathrm e^i$$$$\phantom{\sqrt[3]{z}}=\sqrt[3]{3\mathrm e^{i2\pi\cdot n}}\cdot\mathrm e^i=\sqrt[3]{3}\cdot\mathrm e^i$$Hinweis: \(\sqrt[3]{3\mathrm e^{3i}}\) ist etwas anderes als die Lösung der Gleichung \(z^3=3\mathrm e^{3i}\). Im zweiten Falle müsstest du als Ergebnis hinschreiben:$$\sqrt[3]{z}=\left\{\begin{array}{r}\sqrt[3]{3}\cdot\mathrm e^{i}\\(-1)^{2/3}\sqrt[3]{3}\cdot\mathrm e^{i}\\-\sqrt[3]{-3}\cdot\mathrm e^{i}\end{array}\right.$$
Aufgabe 3:$$\ln z=\ln\left(5\mathrm e^{5,3i}\right)=\ln5+\ln\left(\mathrm e^{5,3i}\right)=\ln5+5,3i\ln\left(\mathrm e\right)=\ln5+5,3i$$Wegen \(e^{5,3i}=e^{i(5,3+2\pi\cdot n)}\) ist die Lösung nicht eindeutig. Du kannst hier beim Imaginärteil der Lösung beliebig oft \(2\pi\) addieren oder subtrahieren.
Aufgabe 4:$$z^3=(2+2i)^3=2^3(1+i)^3=8(1^3+3i+3i^2+i^3)=8(1+3i-3-i)$$$$\phantom{z^3}=8(-2+2i)=-16+16i$$