$$f(x)= 1/4x^2 - x$$
$$f'(x)=$$
\( \lim\limits_{h\to0} \) \( \frac{(\frac{1}{4}((x+h)^{2}-(x+h))-(\frac{1}{4}x^{2}-x)}{h} =\)
\( \lim\limits_{h\to0} \) \( \frac{\frac{1}{2}xh+\frac{1}{4}h^{2}-h}{h} =\)
\( \lim\limits_{h\to0} \) \(\frac{1}{2}x+\frac{1}{4}h-1= \)
$$\frac{1}{2} x-1$$
Die beiden anderen wie oben
$$f(x)=(1-2x)^2=4x^2-4x+1$$$$f'(x)=8x-4$$
$$f(x)=c *x^2$$$$f'(x)=2cx$$