Hallo, du kannst auch zunächst (wie racine_carrée in einem früheren Kommentar andeutete) deinen Ausdruck geschickt einengen. Das könnte zb so aussehen:
Zunächst kann \(b(n)=0\) als untere Schranke gewählt werden, denn offenbar gilt hier für alle \(n\in \mathbb{N}_{\geq 1}\) auch \(0\leq a(n)\).
Nun zur Abschätzung nach oben, die du aber nur benutzen kannst, wenn ihr die Bernoullische-Ungleichung \((*)\) schon kennt (bestimmt ??). Dann bekommt man
\(a(n)=\left(1+\frac{1}{\sqrt{n}}\right)^{-n}=\frac{1}{\left(1+\frac{1}{\sqrt{n}}\right)^{n}}\stackrel{(*)}{\leq} \frac{1}{1+n\cdot \frac{1}{\sqrt{n}}}=\frac{1}{1+\sqrt{n}}\leq \frac{1}{\sqrt{n}}=\sqrt{\frac{1}{n}}\).
Weiter gilt mit \(x_n:=\frac{1}{n}\) auch \(\lim\limits_{n\to\infty} x_n=0\), womit auch \(\lim\limits_{n\to\infty} \sqrt{x_n}=\sqrt{0}=0\) gilt (was man mit Konvergenzdefinition nachweisen kann, falls noch nicht getan).
Insgesamt hast du also \(0=b(n)\leq a(n)\leq \sqrt{x_n}=\sqrt{\frac{1}{n}}\).