0 Daumen
433 Aufrufe

Aufgabe:

Seien A und B logische Aussagen. Zeigen Sie, dass gilt:

\( \neg(A \vee B) \Leftrightarrow \neg A \wedge \neg B \)



Problem/Ansatz:

Es ist ja logisch, dass nicht A oder nicht B gleich nicht A oder nicht B ist. Aber wie kann ich das Mathematisch zeigen?

Und wie nennt sich so eine Aufgabe?

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

Aloha :)

Hier hilft eine Wahrheitstafel:$$\begin{array}{crrrrrl}A\,,\;B && 0\,,\;0 & 0\,,\;1 & 1\,,\;0 & 1\,,\;1\\\hline A\lor B && 0 & 1 & 1 & 1\\\lnot(A\lor B) && 1 & 0 & 0 & 0 & \Longleftarrow\\\lnot A\,,\;\lnot B && 1\,,\;1 & 1\,,\;0 & 0\,,\;1 & 0\,,\;0\\\lnot A\land\lnot B && 1 & 0 & 0 & 0 & \Longleftarrow\end{array}$$Die beiden markierten Zeilen sind identisch.

Avatar von 152 k 🚀

Text erkannt:

\( \neg(A \vee B) \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \)

Das heißt ja: A nicht oder B nicht.

Also mind. eins von den beiden soll "0" sein.

Ich habe das so:blob.png

Da sind einige Fehler drin. Richtig müsste es heißen:$$\begin{array}{c}A & B & \lnot(A\lor B) & \lnot \land \lnot B\\\hline w & w & f & f\\ w & f & f & f \\ f & f & w & w \\f & w & f & f\end{array}$$Das habe ich oben mit \(1\) für \(w\) und \(0\) für \(f\) aber schon geschrieben ;)

0 Daumen

Erstelle eine Wahrheitstabelle.

Avatar von 107 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community