$$f(x)=ax^n$$$$f'(x)=n*ax^{n-1}$$$$f(x)=g(x)+h(x)$$$$f'(x)=g'(x)+h'(x)$$
a)
$$f(x) = 0,5 x^2 , x₀=1$$$$f'(x)= \lim\limits_{h\to 0} 0,5*\frac{(x+h)^2-h^2)}{h} =$$$$\lim\limits_{h\to0}0,5* \frac{2xh+h^2}{h} =$$$$\lim\limits_{h\to0}0,5* (2x+h) =x$$$$f'(1)=1$$
b)
$$f(x) = 4x, x₀=2$$
$$f'(x)=4$$
$$f'(2)=4$$
c)
$$ f(x) = 4-x^2, x₀= 2 $$
$$f'(x)= \lim\limits_{h\to0} \frac{4-(x+h)^2-(4-x^2)}{h}=$$
$$f'(x)= \lim\limits_{h\to0}\frac{-2xh-h^2}{h}=$$
$$f'(x)= \lim\limits_{h\to0} -2x-h=-2x$$
$$f'(2)=-4$$