Aufgabe:
Es seien X, Y und Z Mengen, R eine Relation zwischen X
und Y , und S eine Relation zwischen Y und Z. Vervollständigen Sie die Beweise der
folgenden Aussagen:
(a) Wenn S ◦ R rechtstotal ist, dann ist S rechtstotal.
Beweis. Die Relation S ◦ R sei rechtstotal.
Es sei z ein Element aus Z. Da S ◦ R rechtstotal ist, [...]
Somit gibt es für jedes Element z aus Z ein Element y aus Y so, dass (y, z) ein
Element aus S ist, das heißt, dass S rechtstotal ist.
(b) Wenn S ◦ R linkseindeutig ist und S linkstotal ist, dann ist R linkseindeutig.
Beweis. Die Relation S ◦ R sei linkseindeutig und die Relation S linkstotal.
Es seien x und xb Elemente aus X, sowie y ein Element aus Y so, dass (x, y) und
(x, y b ) Elemente aus R sind. Da S linkstotal ist, [...]
Somit folgt für alle Elemente x und xb aus X und jedes Element y aus Y , für die
(x, y) und (x, y b ) Elemente aus R sind, dass x und xb gleich sind, das heißt, dass R
linkseindeutig ist.
(c) Wenn S ◦ R rechtstotal ist sowie S linkseindeutig und linkstotal ist, dann ist R
rechtstotal.
Beweis. Die Relation S ◦ R sei rechtstotal und die Relation S linkseindeutig und
linkstotal.
Es sei y ein Element aus Y . Da S linkstotal ist, [...]
Somit gibt es für jedes Element y aus Y ein Element x aus X so, dass (x, y) ein
Element aus R ist, das heißt, dass R rechtstotal ist.
Problem/Ansatz:
Ich habe überhaupt keinen Ansatz für diese Aufgaben. Hätte jemand eine Idee/Ansatz oder auch eine Lösung für diese Aufgaben. Ich bin leider ein bisschen überfordert.
Danke.