∑ (k = 1 bis n) (4·k - 1) = 2·n^2 + n
∑ (k = 1 bis n + 1) (4·k - 1) = 2·(n + 1)^2 + n + 1
∑ (k = 1 bis n) (4·k - 1) + (4·(n + 1) - 1) = 2·(n + 1)^2 + n + 1
(2·n^2 + n) + (4·(n + 1) - 1) = 2·(n + 1)^2 + n + 1
2·n^2 + 5·n + 3 = 2·(n^2 + 2·n + 1) + n + 1
2·n^2 + 5·n + 3 = 2·n^2 + 5·n + 3
wahr