0 Daumen
781 Aufrufe

Aufgabe:

Zeigen Sie mit Hilfe der Rechenregeln für das Skalarprodukt für Vektoren :

||x-2y||2 = ||x||2 - 4(x*y) + 4 ||y||2 ,  ∀ x,y in ℝn


Problem/Ansatz:

Wie geht die Aufgabe.. Komme damit gar nicht klar..

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Einfach die Rechenregeln für das Skalarprodukt anwenden:

$$ ||x-2y||²=<x-2y,x-2y>=<x,x>+<x,-2y>+<-2y,x>+<-2y,-2y> $$

$$=||x||²-4Re<x,y>+4||y||² = ||x||²-4xy+4||y||² $$

Avatar von

Danke :) Wie macht man das also irgendwie hatte ich mir die Rechenregeln angeguckt und daraus hatte ich auch nicht viel verstanden :/

Dafür empfehle ich dir einfach mal nach Skalarprodukt oder Skalarproduktnorm zu googeln, findest viele Seiten wo das erklärt wird. Wikipedia ist auch nicht schlecht. Oder schau dir auf Youtube Videos an, wo es erklärt wird ;)

Dankeschöööön :)

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community