Aufgabe:
Wenden Sie den Umkehrsatz auf die Abbildung
f : R^n×n → R^n×n, f(A) = A^2 ,
an um zu zeigen, dass es eine Umgebung U der Identitätsmatrix I n gibt, sodass jede Matrix
B in U eine Quadratwurzel hat (d.h. eine Matrix A mit A^2 = B).
(Hinweis: Die Richtungsableitung von f wurde auf dem ersten Übungsblatt berechnet. Stellen
Sie einen Zusammenhang zwischen der Richtungsableitung und der totalen Ableitung her.)