Hi,
Das könnte man eventuell über die Reihenentwicklung lösen:
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} \pm...$$
$$cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2} + \frac{x^4}{4!} +...$$
Da der cos alterniert ist er kleiner als der cosh. Damit geht der Bruch gegen 0.
Grüße