$$\frac{x^2y^2+y^2z^2+z^2x^2}{xyz} \geq \sqrt{3}$$
$$(x^2y^2+y^2z^2+z^2x^2)^2 \geq 3 x^2y^2z^2$$
$$(x^4y^4+y^4z^4+z^4x^4)+2(x^4y^2z^2+x^2y^4z^2+x^2y^2z^4)\geq 3 x^2y^2z^2$$
$$(x^4y^4+y^4z^4+z^4x^4)+2(x^2+y^2+z^2)x^2y^2z^2\geq 3 x^2y^2z^2$$
$$(x^4y^4+y^4z^4+z^4x^4)+2x^2y^2z^2\geq 3 x^2y^2z^2$$
$$(x^4y^4+y^4z^4+z^4x^4)\geq x^2y^2z^2$$
$$falls; x^2=y^2 =z^2=\frac{1}{3}$$
$$3(\frac{1}{3})^2(\frac{1}{3})^2=\frac{1}{27}=\frac{1}{3}*\frac{1}{3}*\frac{1}{3}$$
$$ x^2-a=y^2-b =z^2-c=\frac{1}{3}$$
$$1 \geq a ; b ; c \geq -1$$
$$a+b+c=0$$
$$(\frac{1}{3}+a)^2(\frac{1}{3}+b)^2+(\frac{1}{3}+b)^2(\frac{1}{3}+c)^2+(\frac{1}{3}+c)^2(\frac{1}{3}+a)^2 \geq (\frac{1}{3}+a)*(\frac{1}{3}+b)*(\frac{1}{3}+c)$$
$$(\frac{1}{9}+\frac{2}{3}a+a^2)(\frac{1}{9}+\frac{2}{3}b+b^2)+ (\frac{1}{9}+\frac{2}{3}b+b^2)+(\frac{1}{9}+\frac{2}{3}c+c^2)(\frac{1}{9}+\frac{2}{3}a+a^2)\geq \frac{1}{27}+\frac{1}{9}(a+b+c)+\frac{1}{3}(ab+bc+ca)+abc$$
$$(\frac{1}{81}+\frac{2}{27}(a+b)+\frac{1}{9}(a^2+b^2)+ \frac{4}{9}(ab)+\frac{2}{3}(a^2b+ab^2)+a^2b^2)$$$$+(\frac{1}{81}+\frac{2}{27}(b+c)+\frac{1}{9}(b^2+c^2)+ \frac{4}{9}(bc)+\frac{2}{3}(b^2c+bc^2)+b^2c^2)$$$$+(\frac{1}{81}+\frac{2}{27}(a+c)+\frac{1}{9}(a^2+c^2)+ \frac{4}{9}(ac)+\frac{2}{3}(a^2c+ac^2)+a^2c^2)$$$$ \geq \frac{1}{27}+\frac{1}{9}(a+b+c)+\frac{1}{3}(ab+bc+ca)+abc$$
$$(\frac{1}{9}(a^2+b^2)+ \frac{4}{9}(ab)+\frac{2}{3}(a^2b+ab^2)+a^2b^2)$$$$+(\frac{1}{9}(b^2+c^2)+ \frac{4}{9}(bc)+\frac{2}{3}(b^2c+bc^2)+b^2c^2)$$$$+(\frac{1}{9}(a^2+c^2)+ \frac{4}{9}(ac)+\frac{2}{3}(a^2c+ac^2)+a^2c^2)$$$$ \geq \frac{1}{3}(ab+bc+ca)+abc$$
$$(\frac{2}{3}(a^2+b^2+c^2)+ \frac{4}{9}(ab+bc+ca)+\frac{2}{3}(a^2(b+c)+b^2(c+a)+c^2(a+b))+(a^2b^2+b^2c^2+c^2a^2)$$$$ \geq \frac{1}{3}(ab+bc+ca)+abc$$
$$(\frac{2}{3}(a^2+b^2+c^2)+ \frac{1}{9}(ab+bc+ca)+\frac{2}{3}(a^2(b+c)+b^2(c+a)+c^2(a+b))+(a^2b^2+b^2c^2+c^2a^2)$$$$ \geq abc$$
Eine Idee ist c durch - (a+b) zu ersetzen.
$$1 \geq a \geq b \geq c \geq -1$$
$$c=- (a+b)$$
$$(\frac{4}{3}(a^2+ab+b^2)- \frac{1}{9}(a^2+ab+b^2)+2(a^2b+ab^2)+(a^2b^2+(b^2+a^2)(a+b)^2)$$$$ \geq -a^2b-ab^2$$
$$(\frac{11}{3}(a^2+ab+b^2)+3(a^2b+ab^2)+(a^2b^2+(b^2+a^2)(a+b)^2)\geq 0$$ä
Stimmt für
$$1 \geq a \geq b \geq 0 \geq c \geq -1$$
Wenn
$$1 \geq a \geq 0 \geq b \geq c \geq -1$$
So ist
$$1 |a| \geq |b|$$
$$(\frac{11}{3}(a+b)2-ab)+3(a^2b+ab^2)+(a^2b^2+(b^2+a^2)(a+b)^2)\geq 0$$ä
Wenn b<0, dann
$$\frac{11}{3} (-ab)+3a^2b>0$$
Damit ist die Behauptung bewiesen.