Zeigen Sie: Für jedes \( r \in(-1,1) \) ist das Integral \( \int \limits_{0}^{\pi} \log \left(1-2 r \cos (t)+r^{2}\right) d t \) gleich \( 0 . \)
Als Hinweis ist gegeben: Differentiation unter dem Integral. Es bietet sich an im Komplexen zu rechnen, und den Term \( 1 - 2r cos(t) + r^2 = (1 - re^{it})(1 - re^{-it}) \) zu faktorisieren. Mit einer Partialbruchzerlegung läßt sich dann das Integral leichter berechnen.
Jemand eine Idee?