0 Daumen
341 Aufrufe

Hallo, ihr lieben Mathematiker, ich habe folgende Aufgabe zum Üben gefunden und weiß nicht, damit umzugehen bzw. jegliche Lösungen zu finden:

Seien S = {s1, s2, s3} die Standardbasis und T = {t1, t2, t3} = {s1 + s2, s1 + s3, s2 + s3} Basen des R^3. Sei weiter      U = {u1, u2, u3, u4} = {(1, 1, 0, 0),(1, 0, 1, 0),(1, 0, 0, 1),(1, 0, 0, 0)}
eine Basis des R^4. Sei φ : R^3 → R^4 definiert durch
φ (t1) = 2 u1 + u3 + u4,
φ (t2) = u1 + 2 u2 − u4,
φ (t3) = 2 u2 + u3 − 2 u4.
Berechnen Sie DU,T (φ) sowie DU,S(φ) unter Verwendung der Basiswechselmatrix
CT,S.

Meines Verständnisses nach kann D ja nur die Darstellungsmatrix sein. Ich bitte um Hilfe und natürlich auch viel Spaß.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community