Aloha :)
$$f(x)=x^2(\,2-\ln x\,)=2x^2-x^2\ln x$$$$f'(x)=\left(2x^2-x^2\ln x\right)'=(2x^2)'-(\underbrace{x^2}_{=u}\cdot\underbrace{\ln x}_{=v})'=4x-(\,\underbrace{2x}_{=u'}\cdot\underbrace{\ln x}_{=v}+\underbrace{x^2}_{=u}\cdot\underbrace{\frac{1}{x}}_{=v'}\,)$$$$\phantom{f'(x)}=4x-2x\ln x-x=3x-2x\ln x$$$$f''(x)=(\,3x-2x\ln x\,)'=(\,3x\,)'-(\,\underbrace{2x}_{=u}\cdot\underbrace{\ln x}_{=v}\,)'=3-(\,\underbrace{2}_{=u'}\cdot\underbrace{\ln x}_{=v}+\underbrace{2x}_{=u}\cdot\underbrace{\frac{1}{x}}_{=v'}\,)$$$$\phantom{f''(x)}=3-2\ln x-2=1-2\ln x$$$$f'''(x)=(\,1-2\ln x\,)'=-\frac{2}{x}$$