\(\dfrac{a}{x−1 }= \dfrac{3}{4x-4} + \dfrac{3}{x+1} \)
\(\dfrac{a}{x−1 }= \dfrac{3}{4(x-1)} + \dfrac{3}{x+1} \)
\(\dfrac{4a}{4(x−1 )}= \dfrac{3}{4(x-1)} + \dfrac{3}{x٪+1} \)
\(\dfrac{4a-3}{4(x−1) }= \dfrac{3}{x+1} \)
Mit beiden Nennern multiplizieren
\((4a-3)(x+1)=12(x-1)\)
\( (4a-3)x+4a-3=12x-12\)
\( (4a-15)x=-9-4a\)
\(x=\dfrac{-9-4a}{4a-15}\)
\(x=\dfrac{9+4a}{15-4a}\)
:-)