g(x)= x^4 - 2x^2
Nullstellen: g (x)=0
x^4 - 2 x^2=0
x^2 • ( x^2 - 2 )=0
x^2=0 ist eine doppelte Nullstelle
(x^2 - 2 ) =0
x^2 = 2
x_3 = \( \sqrt{2} \)
x_4 = -\( \sqrt{2} \)
Extrema: g ´ (x) = 0
g´(x)= 4 • x^3 - 4x
4 • x^3 - 4 x = 0
x^3 - x = 0
x•( x^2-1) = 0
x_1 = 0 → g(x_1)=...
x_2 = 1 → g(x_2)=...
x_3 = - 1 → g(x_3)=...
Art der Extrema:
g´´(x) = 12 x^2 - 4
g´´(0) = - 4 < 0 → Maximum
g´´(1) = 12 - 4= 8 > 0 → Minimum
g´´(-1) = 12 - 4= 8 > 0 → Minimum
Wendepunkte : g´´ (x) = 0
12 x^2 - 4= 0
x^2 = \( \frac{1}{3} \)
x_1=... → g(x_1)= ...
x_2=... → g(x_2)= ...