Aufgabe:
Wir betrachten die folgenden Untervektorräume von \( \mathbb{R}^{5} \).
\( U:=\left\langle\left(\begin{array}{l} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}\right),\left(\begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \\ -1 \end{array}\right),\left(\begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{array}\right),\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 2 \\ 1 \end{array}\right)\right\rangle, \quad V:=\left\langle\left(\begin{array}{l} 1 \\ 2 \\ 3 \\ 2 \\ 1 \end{array}\right),\left(\begin{array}{c} 2 \\ 1 \\ -2 \\ 0 \\ 1 \end{array}\right)\right\rangle, \quad W:=\left\langle\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}\right),\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 2 \\ 0 \end{array}\right),\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 2 \\ 3 \end{array}\right),\left(\begin{array}{l} 0 \\ 0 \\ 3 \\ 2 \\ 1 \end{array}\right)\right\rangle \)
a) Zeigen Sie, dass \( V \) ein Untervektorraum von \( U \) ist.
b) Berechnen Sie dann die Dimensionen folgender Vektorräume:
(i) \( U / V \),
(iii) \( U+W \)
(ii) \( V+U \),
(iv) \( U /(W \cap U) \)
Hinweis: Berechnen sie zuerst die Dimensionen von \( U, V \) und \( W \).
Problem/Ansatz:
Ich habe gerade ein Problem zu verstehen. Wie man aus dem Spann herausfinden kann, ob ein kleinerer Spann ein Unterraum ist. Ich hätte gerne etwas Hilfe dabei. Würde aber gerne die Aufgabe selber bearbeiten.
Vielen Dank für die Hilfe im Voraus.