Aloha :)
Wir setzen voraus, dass beide Vektoren \(\ne\vec 0\) sind, weil sonst kein Winkel zwischen \(\varphi\) ihnen definiert ist. Unter dieser Voraussetzung rechnen wir:
$$\left.\left|\vec u\times\vec v\right|=\vec u\cdot\vec v\quad\right|\text{Betragsformeln für die Produkte einsetzen}$$$$\left.uv\cdot\sin\varphi=uv\cdot\cos\varphi\quad\right|:(uv)$$$$\left.\sin\varphi=\cos\varphi\quad\right|\text{Definition des Cosinus als komplementärer Sinus}$$$$\left.\sin\varphi=\sin\left(\frac{\pi}{2}-\varphi\right)\quad\right.$$Da Winkel zwischen Vektoren immer im Bereich von 0 bis 180 Grad liegen müssen, brauchen wir uns hier um die \(2\pi\)-Periode des Sinus nicht zu kümmern und finden in diesem Winkelbereich genau eine Lösung:$$\varphi=\frac{\pi}{2}-\varphi\implies 2\varphi=\frac{\pi}{2}\implies\varphi=\frac{\pi}{4}\;\text{bzw.}\;\varphi=45^\circ$$