Berechne die Höhe und das Volumen (Pyramide)
a=17 cm b= 12 cm M= 242,9 cm^2
Hallo Leute ich weiß nicht, wie ich die Höhe rechnen soll :(
Die Körperhöhe sei h.Die Höhe des Dreiecks mit des Basis a=17 ist dann \( h_a=\sqrt{6^2+h^2} \).Die Höhe des Dreiecks mit des Basis b=12 ist dann \( h_b=\sqrt{8,5^2+h^2} \).Die (gegebene) Mantelfläche ist somit \( 17\sqrt{6^2+h^2} \) + \( 12\sqrt{8,5^2+h^2} \).
Mach was draus.
Hallo
was sollen a und b bei der P sein? zeichne die Pyramide, dazu einen Schnitt entweder durch die Diagonale oder die Seitenmitte des Quadrats zur Spitze. Darin ist die Höhe, und dann Pythagoras ein oder 2 mal, je nachdem was b ist die Mantelfläche ist ja 4* gleichschenkliges Dreieck, mit Grundseite a? dadurch erfährst du die Höhe der Dreiecke!Gruß lul
Kannst du mir es zeigen, wie es geht?
@lul
Ich bin mir ziemlich sicher, dass die Grundfläche ein Rechteck (und kein Quadrat) ist.
Ja, dass dachte ich mir auch. Kannst du mir weiterhelfen?
Abakus hat dir doch geholfen ; zeichne 2 Querschnitt der Pyramide jeweils durch die Mitten gegenüberliegender Seiten. dann hast mit der Höhe der Pyramide ein rechtwinkliges Dreieck einer Dreieckshöhe als Hypotenuse. die hat Abakus benutzt.
bei der Art Aufgaben immer nach Schnitten suchen die die gesuchten Objekte enthalten.
Gruß lul
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos