0 Daumen
463 Aufrufe

Aufgabe:

Argumentieren Sie, dass jeder Boolesche Term
semantisch äquivalent ist zu einem Booleschen
Term in kanonischer DNF.


Avatar von

1 Antwort

0 Daumen

Wikipedia beantwortet deine Frage, wenn du ein wenig suchst. Wie wäre es hiermit:

Jede Formel der Aussagenlogik lässt sich in die disjunktive Normalform umwandeln, da sich auch jede Boolesche Funktion mit einer DNF darstellen lässt. Dazu genügt es, die Zeilen ihrer Wahrheitstabelle abzulesen. Für jede Zeile, die als Resultat eine 1 liefert, wird eine Konjunktion gebildet, die alle Variablen der Funktion (der Zeile) verknüpft. Variablen, die in der Zeile mit 1 (bedeutet 'wahr') belegt sind, werden dabei nicht negiert und Variablen, die mit 0 (bedeutet 'falsch') belegt sind, werden negiert. Diese Terme werden auch Minterme genannt. Durch disjunktive Verknüpfung der Minterme erhält man schließlich die disjunktive Normalform.

Auf diese Weise erhält man allerdings in der Regel keine minimale Formel, das heißt eine Formel mit möglichst wenig Termen. Will man eine minimale Formel bilden, so kann man dies mit Hilfe von Karnaugh-Veitch-Diagrammen oder mithilfe des Quine-McCluskey-Verfahrens tun.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community